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Consider a two-dimensional domain containing a medium with unit electrical con-
ductivity and one or more non-conducting objects. The problem considered here is
that of identifying shape and position of the objects on the sole basis of measurements
on the external boundary of the domain. An iterative technique is presented in which
a sequence of solutions of the direct problem is generated by a boundary element
method on the basis of assumed positions and shapes of the objects. The key new
aspect of the approach is that the boundary of each object is represented in terms of
Fourier coefficients rather than a point-wise discretization. These Fourier coefficients
generate the fundamental “shapes” mentioned in the title in terms of which the object
shape is decomposed. The iterative procedure consists in the successive updating of
the Fourier coefficients at every step by means of the Levenberg–Marquardt algo-
rithm. It is shown that the Fourier decomposition—which, essentially, amounts to a
form of image compression—enables the algorithm to image the embedded objects
with unprecedented accuracy and clarity. In a separate paper, the method has also
been extended to three dimensions with equally good results.c© 1999 Academic Press

Key Words:electrical impedance tomography; inverse problems; image compres-
sion.

1. INTRODUCTION

The general problem of electrical impedance tomography consists in the reconstruction of
an unknown impedance distribution in a spatial region on the basis of measurements on the
boundary. The technique, originally developed for biomedical and geological applications,
uses an array of electrodes placed on the boundary of the domain of interest (see, e.g.,
Refs. [1, 2] for recent reviews). A sequence of prescribed voltages (or currents) is applied
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to these electrodes, and the resulting currents (or voltages) are measured. The problem that
arises in this way falls in the category of so-called inverse problems as the solution sought is
not the calculation of currents (or voltages) given voltages (or currents) and the parameters
of the domain—as in the direct problem—but the characterization of the domain itself. It is
well known that problems of this type are ill posed so that small amounts of measurement
noise are sufficient to render a faithful resolution impossible. It is therefore essential to
stabilize the solution against the instability resulting from noisy data.

In the present paper we address a special class of problems of this type, in which the
region of interest is two-dimensional and the unknown electrical conductivity has a constant
value of unity except in the interior of one or more objects where it vanishes. We consider
measurements at very low frequency so that the impedance is purely real and reduces to the
resistivity. In Ref. [3] some encouraging preliminary results in which the present method is
extended to three dimensions were shown.

Situations of the type we study may arise for example in two-phase flow, where long bub-
bles rise in tubes in the so-called slug flow regime, the detection of buried cables, the imaging
of bones or vessels in limbs, of lungs in the chest, non-destructive evaluation, and others.

In general, the approaches developed to date to determine an unknown impedance distri-
bution fall into two classes. One is the so-called back-projection method, which is basically
an adaptation of the technique developed for medical CAT-scans. Barber and Brown [4, 5]
were the first to produce the image of a human forearm using this method, although the
sharpness of the image was limited. Santosa and Vogelius [6] later improved the technique
by using the conjugate residual method. Guardoet al. [7] also used the back-projection
method in their study and gave an experimental demonstration in a three-dimensional case.
So far, the back-projection method has been applied only to situations in which the conduc-
tivity contrast is small. It is not clear whether it can be extended to the problem considered
here where, on the contrary, it is large.

The other approach, called “model based,” consists in the generation of a sequence of
solutions of the direct, or forward, problem, in which the currents (or voltages) predicted
on the basis of an assumed impedance distribution are compared with those measured. At
each step the assumed impedance distribution is refined in such a way as to decrease the
mismatch between the forward solution and measurement (see, e.g., Refs. [1, 2, 8–11]). This
is the path that we follow in the present paper. In our implementation we use the boundary
integral method for the forward problem (see, e.g., Refs. [12, 13]), and the Levenberg–
Marquardt algorithm (see, e.g., Ref. [14]) for the inverse problem. The key new feature that
we introduce—and that results in a remarkable improvement over existing methods—is
the description of the boundary of the objects in terms of a Fourier series, rather than a
point-wise discretization. In this way, we are plagued far less than previous investigators
by the instability of the solution with respect to measurement noise.

2. MATHEMATICAL MODEL

We consider a medium with uniform electric conductivity occupying a two-dimensional
plane regionÄ bounded externally by a circleC and internally by one or more curves6 j

with j = 1, 2, . . . ,m. The electrical conductivity vanishes inside the internal boundaries.
The objective of the tomographic reconstruction is to deduce the shape of the internal
boundaries from measurements on the external boundary ofÄ.
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FIG. 1. Computational domain with 3 non-conducting objects. The inset shows the boundary with gaps and
electrodes.

This external boundary consists of a number of equal, evenly spaced, perfectly conducting
electrodesEk separated by perfectly insulating gapsGl as shown in Fig. 1. In practice, of
course, there will be some contact resistance that would, however, be highly dependent
on the particular experimental set-up and conditions [15, 16]. Since this effect cannot be
meaningfully modeled in general terms, we do not attempt to include it although it may, in
practice, have quantitatively significant effects.

In principle the data needed for the tomographic image reconstruction can be acquired
either by imposing a current pattern on the electrodes and measuring the resulting voltages
or, reciprocally, by imposing voltages and measuring currents. The latter alternative leads
to a somewhat simpler modeling as, in practice, electrodes consist of highly conductive
material throughout which the voltage can be assumed to be spatially uniform. When the
total current into an electrode is specified, on the other hand, the current density is not
uniform but needs to be determined from the solution of a boundary value problem. For
this reason, for the sake of simplicity, we consider here a situation in which voltages are
prescribed and currents measured.

As in other model-based algorithms, our method consists of the solution of a sequence
of forward problems in which a better and better approximation to the internal boundaries
6 j is progressively constructed.
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The mathematical formulation of the forward problem is the following. The electric
potentialV inside the regionÄ satisfies Laplace’s equation

∇2V = 0, (1)

subject to the condition of an imposed voltageVk on thekth electrodeEk and of zero current
in thel th gapGl . Mathematically, this latter condition is expressed by

n ·∇V = 0 overGl . (2)

The same condition applies at the inner boundaries6 j . Here and in the following we set
the electrical conductivity of the material to 1 for convenience.

The normal current densityn ·∇V on thekth electrode and the total currentIk through
it are related by

Ik =
∫
Ek

n ·∇V dEk. (3)

A comparison of these calculated currents with the measured ones gives a measure of the
accuracy of the reconstruction and a means to refine it.

The ill-posed nature of tomographic reconstruction manifests itself in an ill-conditioning
of the matrix of the system the solution of which gives the parameters defining the image. In
the past the difficulty due to this ill-conditioning has been mitigated by the use of techniques
such as the singular value decomposition, but at the expense of a significant sacrifice in
image quality (see, e.g., Ref. [17]). The degree of ill-conditioning grows as the number of
unknowns used to parameterize the image is increased for a given number of measurements.

This remark suggests that a desirable feature of an inversion method would be the use of a
description of the object in terms of a number of parameters as small as possible. From this
perspective it is clear that a point-wise description of the object boundaries, such as the one
used, for example, by Murai and Kagawa [18], is rather inefficient. For example, 4 points
(i.e., 8 parameters) can only approximate a quadrilateral. A more complex shape would
require a significantly larger number of parameters even for a very coarse representation.

We take a different approach, namely we try to reduce the number of parameters nec-
essary for an acceptable approximation of the image by superposing fundamental shapes,
each one characterized by a small number of parameters, whence the denomination “shape
decomposition” of the present technique. One may interpret this idea as attempting to re-
construct a compressed version of the image of the original object. Such an approach is
particularly valuable when some general information as to the general shape of the objects
is available a priori. For example, circles can be described in terms of 3 parameters only,
the position of the center, and the radius.

While there is of course a great latitude in the choice of the fundamental shapes, here we
use, for each object, a Fourier decomposition of the type

|x− xC| = 1

2
A0+

∞∑
k=2

(Ak coskθ + Bk sinkθ). (4)

HerexC ≡ (xC, yC) is the centroid of the object defined so that the termk= 1 is not present
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in the expansion (4), i.e.,∫ 2π

0
|x− xC| sinθ dθ = 0,

∫ 2π

0
|x− xC| cosθ dθ = 0. (5)

For a smooth contour, the series (4) converges faster than any power of 1/n and one
may therefore expect that a small number of terms would be sufficient for an acceptable
reconstruction.

The angleθ is measured from an arbitrary direction, that we take as thex-axis of a plane
Cartesian coordinate system. In practice, of course, the series (4) is truncated to a finite
number of modeskmax= N, after which the problem of image reconstruction is reduced to
the calculation of the 2N− 1 Fourier coefficientsA0, Ak, Bk, k= 2, 3, . . . , N, and of the
two coordinate(xC, yC) of the object centroid. The total number of unknowns is therefore
2N+ 1 per object; in a senseN can thus be thought of as a regularization parameter for the
present method.

Clearly, the expansion (4) is only valid for shapes such that all rays issuing fromxC

intersect the boundary of the object at one point only. This restriction can be alleviated in
several ways. For example, one might use simultaneously more than one Fourier expansion
centered at different points and suitably matched. Another possibility might be the use of
a normalized arc length in place of the polar angleθ . Since we have not explored any of
these alternatives yet, in this paper we shall only consider shapes that can be represented in
the form (4).

3. NUMERICAL ASPECTS

It will be recalled that in the class of problems considered here the objects to be imaged
have zero conductivity. This circumstance can be exploited to improve the tomographic
reconstruction. In the first place, one can use a boundary integral method for the calculation
of V according to (see, e.g., Refs. [12, 13])

V(x) = 1

2π

∫ (
V(x′)

∂

∂n′
log |x− x′| − log |x− x′|∂V

∂n′

)
dl ′, (6)

where the integral is over the entire boundary of the problem, i.e., the electrodes, the
insulating gaps, and the interior object(s); the factor 2 in the denominator is because the
field pointx is on the boundary. This possibility is particularly advantageous here in view
of the fact that only the normal gradient ofV on the boundary is required in the present
problem for the evaluation of (3). With a finite-element approach, the entire domain would
have to be discretized and resolution and quality of the reconstructed image would strongly
depend on the particular discretization used, particularly in the neighborhood of the objects.

In the numerical examples discussed below we assume that the electrode-to-gap area
(or better, in two dimensions, arc length) ratio is 10 to 1 (Fig. 1). The number of nodes
used for the electrodes and the gaps was progressively increased until the values of the
currents stabilized to within 0.02%. Typically 29 and 17 nodes for each electrode and gap,
respectively, were required. The nodes were denser near the edge of the electrodes to better
resolve the square-root singularity of the current density there; 60 nodes were used for the
boundary of the interior object, which tests proved to be sufficient for good accuracy. These
nodes were equally spaced in the angular direction. In the implementation of the boundary



80 HAN AND PROSPERETTI

integral method we use cubic splines to describe the boundaries and a linear interpolation for
V over each boundary element. Gaussian integration was used with 6 nodes on each element.

We made no attempt to optimize the boundary integral calculation. For instance, a pa-
rameterization ofV that were to explicitly account for the square-root singularity at the
electrode edges could reduce the number of nodes without sacrificing accuracy. On the
other hand, it is likely that such an approach would have to be modified for example in
the presence of a model for the contact resistance. We feel that this and other aspects of a
similar nature are peripheral to the main point of this paper which is the introduction of the
shape decomposition idea.

For the reasons discussed in the next section, the reconstruction procedure begins with
a search for the circle(s) that best approximates the target. For each estimate of the target,
the 1

2 N(N− 1) currents that are available withN electrodes are calculated from (3) and
compared with the “measured” currents (i.e., the numerically generate pseudo-data). The
Levenberg–Marquardt algorithm [14] is used to progressively refine the parameter values.
This part of the procedure is very rapid as it only involves three parameters and is arrested
when the relative difference between current values evaluated in two successive iterations
falls below 10−4. When this criterion is satisfied, a search for all the parameters included in
the final search is started, but with a lower spatial discretization (11 nodes on the electrodes
and 3 in the gaps). This procedure is arrested when a convergence criterion of 10−4 is met.
Finally, a full search with the same number of nodes used for the generation of the pseudo-
data is carried out and terminated as before with a convergence criterion of 10−4–10−5. In
general it was found that, at the termination of the iteration procedure, the residual was of
the order of 10−4–10−5 times the initial value.

The computational time for the examplesthat follow on an SGI Octane workstation varied
from a few minutes to several hours in the cases with the largest number (24) of electrodes.

4. RESULTS

In order to test the proposed method, in this paper we use “pseudo-data” generated from
the solution of the forward problem with a given object shape. The Fourier coefficients
used to parameterize the object are the “target” values that the inversion algorithm must
reconstruct.

It must be recognized that, although this is a common procedure, the data are not “exact”
and, in a sense, the numerical error introduces an uncontrolled regularization. Thus, in prin-
ciple, one might even worry that an apparent ability to reconstruct the object might be fortu-
itous. In this connection we may note that, first, the pseudo-data that we use are essentially
converged and, therefore, numerically indistinguishable from a hypothetical exact solution;
second, the present method seems to work well even in the presence of noise (see below)
and, third, satisfactory results are consistently recovered varying the number of Fourier com-
ponents, electrodes, and objects. Hence we believe that the results that we describe furnish
a sufficiently stringent test of the ability of the present shape decomposition algorithm.

We have tested the method both with objects that can be represented exactly by the
superposition of a finite number of Fourier modes, which we callFourier objects, and with
objects for which any finite Fourier representation is only an approximation of the real shape,
non-Fourier objects. Although perhaps not very realistic, Fourier objects are useful as their
exact reconstruction by the algorithm is, in principle, possible. Any error can therefore by
imputed to the method itself rather than to the accuracy with which a truncated Fourier
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series represents the actual shape. Thus Fourier objects enable us to get a good assessment
of the properties of the algorithm, e.g., its sensitivity to factors such as shape complexity,
number of electrodes used, and object location.

4.1. Fourier Objects

For Fourier objects, one can envisage situations where the number of Fourier modes is
known a priori or not. The former case is obviously simpler and we begin by one such
example.

We consider an object generated with 8 Fourier modes, i.e., a total of 17 parameters, with
xC = yC = 0. The inversion algorithm based on an 18-electrode system, searched for all the
17 parameters at the same time and the starting guess was a circle of radius 0.3 at the center
of the domain. The solid line in Fig. 2 shows the object and the dashed line the image recon-
structed by the inversion algorithm when the convergence criterion was satisfied after 18
steps. Table I gives the values of the exact Fourier amplitudes, the initial guess, and the final
converged values (column 4). It can be seen that the algorithm performed well in this case.

It was found that when the procedure was applied to the same object displaced from the
center of the domain, the accuracy of the reconstruction was affected by the position of
the initial circle. A considerable improvement of the method’s performance was achieved
by adopting a different, more robust strategy that might be termed “deferred search”: a
preliminary search is conducted for the center and radius of an approximating circle and,
once these parameters have been estimated, the search for the complete parameter set is
turned on as described at the end of the previous section. Numerically, this procedure can
be interpreted as a pre-conditioning of the iteration operator. With this strategy, excellent
results were obtained irrespective of the location of the initial circle as shown in columns
5 and 6 of Table I that correspond to the same object of Fig. 2 centered at (−0.2, 0) and
(−0.39, 0), respectively. A total of 26 and 29 iterations were required, respectively, starting
from the domain’s center; about 5 iterations were necessary to find the approximating circle.
This same strategy was used for all the examples that follow.

FIG. 2. Reconstruction on the basis of an 18-electrode system (dashed line) of an object generated with 8
Fourier modes (solid line). See Table I, column 4, for numerical values.
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TABLE I

Exact Values, Initial Guesses, and Computed Results for the Object of Fig. 2 Centered

at (0., 0.) (Column 4), (−0.2, 0) (Column 5), and (−0.39, 0.) (Last Column)

Calculated value Calculated value Calculated value
Parameter Exact value Initial guess (−0.0015, 0.0027) (−0.1997, 0.0007) (−0.3887, 0.0004)

A0 0.3200 0.3000 0.3269 0.3262 0.3249
A2 0.0400 0.0 0.0349 0.0365 0.0381
B2 0.0 0.0 −0.0038 −0.0033 −0.0030
A3 0.0 0.0 0.0031 0.0022 0.0015
B3 0.0400 0.0 0.0330 0.0335 0.0343
A4 0.0400 0.0 0.0421 0.0412 0.0408
B4 0.0 0.0 −0.0030 −0.0043 −0.0041
A5 0.0400 0.0 0.0420 0.0410 0.0406
B5 0.0400 0.0 0.0329 0.0353 0.0365
A6 0.0 0.0 0.0080 0.0056 0.0029
B6 0.0 0.0 0.0014 0.0010 0.0013
A7 0.0400 0.0 0.0382 0.0366 0.0366
B7 0.0 0.0 0.0032 0.0034 0.0036
A8 0.0400 0.0 0.0286 0.0315 0.0341
B8 0.0 0.0 0.0009 0.0038 0.0030

Note.The calculated coordinates of the object center are shown at the top of the last 3 columns.

We now consider, again with 18 electrodes, two cases in which the number of parameters
searched is not the same as that used to generate the object. In the first example, the number
of parameters searched is smaller. In this case, one may expect that the higher-frequency
components of the true shape act as noise contaminating the data presented to the inversion
algorithm. The first panel of Fig. 3 shows an object centered at the origin and generated with 6
Fourier components (solid line) and its reconstructed image with only 5 Fourier components
after 42 iterations (dashed line). The reconstructed image is clearly an approximation of the
true image. The values of the reconstructed Fourier parameters for this case are shown in
the fourth column of Table II. From these numerical results, we see that the approximation
is acceptable in spite of the unavoidable error.

For the same object, we next allowed 7 Fourier modes in the image, i.e., one more
than those necessary for an exact reconstruction. The results of the reconstruction after 41
iterations are shown in the second panel of Fig. 3 and the corresponding numerical values
are given in the last column of Table II. The inversion algorithm was evidently successful
in this case.

These results illustrate the ability of the inversion algorithm to reconstruct Fourier objects
even when there are uncertainties in the number of modes used to generate them.

4.2. Non-Fourier Objects

The next set of trials involved image reconstruction of objects with shapes that cannot be
described exactly by a small number of Fourier components. To present a challenge to the
reconstruction algorithm we chose objects with fairly sharp corners. Even though, being
generated with cubic splines, these figures do not possess actual sharp corners that would
result in ak−2 decay of the Fourier coefficients, traces of the slow convergence of the Fourier
representation may still be expected to remain. This circumstance renders a relatively large
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FIG. 3. An object generated with 6 Fourier modes (solid lines) is reconstructed (dashed lines) searching for
5 modes (upper panel) and 7 modes (lower panel) on the basis of an 18-electrode system. For numerical values
see Table II.

number of modes necessary for an accurate reconstruction and, therefore, such objects
represent a more stringent test for the inversion than those considered previously.

The first example is a pentagon-shaped object centered at (0.259, 0.259). Figures 4a
and 4b show the results of two reconstruction attempts based on 5 (12 iterations, first
panel) and 6 (14 iterations, second panel) modes, respectively, in both cases on the basis
of data corresponding to 16 electrodes. The true object is shown by the solid line and
the final converged images by dashed lines. There is little difference between the two
reconstructions.

Next a rotatedL-shape was reconstructed searching for 5 and 6 Fourier modes, in both
cases with the same convergence criteria. Since this case is a more difficult one, we used
simulated data with a 24-electrode system. The converged images, obtained after 15 and
39 iterations, respectively, are shown in Fig. 5. Both searches captured the essence of the
object features fairly successfully, but with varying degree of distortion. We also tried 7
Fourier modes, but without any significant improvement in the image quality.
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TABLE II

Exact Values, Initial Guess, and Computed Results for the Object of Fig. 3 Constructed

with 6 Fourier Modes

Exact value Initial guess Calculated value Calculated value
Parameter (0, 0) (0, 0) (−0.0238, 0.0102) (−0.0002,−0.0028)

A0 0.3000 0.3000 0.2966 0.3003
A2 0.0600 0.0 0.0761 0.0613
B2 0.0 0.0 −0.0122 −0.0020
A3 0.0 0.0 −0.0153 −0.0002
B3 0.0600 0.0 0.0337 0.0592
A4 0.0600 0.0 0.1001 0.0575
B4 0.0 0.0 0.0033 0.0007
A5 0.0600 0.0 0.0539 0.0614
B5 0.0 0.0 −0.0056 0.0003
A6 0.0600 0.0 0.0 0.0607
B6 0.0 0.0 0.0 0.0015
A7 0.0 0.0 0.0 0.0001
B7 0.0 0.0 0.0 0.0046

Note.The calculated coefficients with a 5- and a 7-mode reconstruction are shown in the 2 last columns. Since
5 modes are insufficient for an exact reconstruction of the object, the corresponding results show an appreciable
error.

4.3. Noisy Data

In the examples studied so far the objects were reconstructed from the simulated data of
the forward solution algorithm without any added noise. In view of the ill-conditioning of
the inverse problem, it is crucial to test whether the inversion algorithm is robust enough
to tolerate noise in the data. It is also interesting to explore whether the performance of the
method in the presence of noise can be improved by increasing the number of electrodes.
Another parameter that affects the quality of the reconstruction is the number of Fourier
modes kept in the search. Again, it is interesting to explore the robustness of the method as
this parameter is varied in the presence of noise.

To test the stability of the algorithm with respect to errors in the data we generated
artificial “noise” by introducing a random perturbation. As before, the data are simulated
by solving the forward problem numerically and the perturbation is introduced according
to the rule

P′ = P+ εr ‖P‖, (7)

wherer is a random number (different for each component ofP) with −0.5≤ r ≤ 0.5 and
ε is a parameter quantifying the noise level. The elements of the vectorP are the simulated
electrode current data, the elements ofP′ are the corresponding “noisy” data, and‖P‖ is
the maximum norm. We considerε= 1% and 2%, which is of the order usually considered
in the literature (see, e.g., Ref. [19]).

The first test was the reconstruction of the shape shown in Fig. 6, centered at (0, 0) and
generated with 5 Fourier modes with various levels of noise. An 8-electrode system was
simulated. The reconstructed images after contamination of the data by 1% and 2% noise
levels are shown in Figs. 6a (15 iterations) and 6b (18 iterations). The reconstruction remains
acceptable with a 2% noise level. We found that if the noise level is raised to 5%, the image
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FIG. 4. A pentagon-shaped object reconstructed searching for 5 Fourier modes (upper panel) and 6 modes
(lower panel) on the basis of a 16-electrode system.

quality is greatly degraded with the boundary notching inward toward the centroid as the
higher frequency components grow large.

Similar results were found for the reconstruction of other types of images from noisy
boundary measurement data. Figure 7 shows the reconstruction of a square object of side
0.5 centered at (0.25, 0.25) by a 16-electrode system at zero noise level (13 iterations, top
panel) and at 1% and 2% noise level (14 and 19 iterations, respectively). If the noise level
is further increased, the higher frequency components in the image grow and eventually
dominate. Four Fourier modes were searched for in this case; the truncation of the exact
shape to this small number of coefficients is evidently a form of regularization as mentioned
before in Section 2.

Figure 8 shows the image of the square reconstructed with 4 (35 iterations), 6 (51 iter-
ations), 7 (64 iterations), and 9 Fourier modes (57 iterations) with a noise level of 2% in
the synthetic data generated by a 16-electrode system. As can be seen, the reconstruction
becomes more and more unstable as the number of modes is increased.
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FIG. 5. An L-shaped object reconstructed searching for 5 (upper panel) and 6 (lower panel) Fourier modes
with data simulated by a 24-electrode system.

The instability caused by noise in the data or a large number of parameters may be
alleviated by utilizing a larger number of electrodes, i.e., by increasing the ratio of the number
of measurements to that of unknowns. The number of distinct measurements obtainable with
N electrodes is obviously the number of distinct pairs into which they can be grouped, i.e.,
1
2 N(N− 1). Therefore, the number of distinct data increases quadratically with the number
of electrodes although, beyond a certain point, the difference between the data produced
by neighboring electrode pairs becomes too small to mitigate the ill-conditioning of the
problem. Nevertheless we find that increasing the number of electrodes does help with image
reconstruction in the presence of noise. Some examples are shown in Fig. 9 where the results
of attempts at reconstruction of the square used before with 12, 16, and 24 electrodes are
shown in the presence of 1% and 2% noise levels. For the 1% noise level (Figs. 9a to 9c) the
number of iterations necessary for convergence was 20, 16, and 15, respectively. For a 2%
noise level, convergence was not achieved for the 12- and 16-electrode systems (Figs. 9d,
9e), while it occurred after 16 iterations with 24 electrodes (Fig. 9f). In spite of some degree
of degradation, the image produced by the 16-electrode system captured the key features
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FIG. 6. Attempted reconstructions (dashed lines) of an object generated with 5 Fourier modes in the presence
of 1% (top panel), and 2% (lower panel) noise.

of the object successfully at the 1% noise level. At 2%, however, the images reconstructed
with fewer electrodes were strongly affected by the noise. Although in our experience the
larger number of electrodes has consistently yielded better results, this conclusion is based
on observations of a limited number of tests. Both theoretical and numerical investigations
are needed to gain additional insight into this issue.

4.4. Several Objects

We now present results of a preliminary test of the performance of the inversion algorithm
when more than one object is present.

The first case we consider has two Fourier objects. Figure 10 shows a sequence of inter-
mediate images during the reconstruction process for non-noisy synthetic data generated by
an 8-electrode system. In this case, the number of objects to be reconstructed was prescribed
at the beginning of the inversion. Each object was generated with 3 Fourier modes, for a
total number of 14 unknowns. This information about the number of parameters for each
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FIG. 7. Attempted reconstruction of a square with (a) no noise; (b) 1% noise; (c) 2% noise, all with data
generated by a 12-electrode system searching for 4 Fourier modes.



SHAPE DECOMPOSITION METHOD FOR EIT 89

FIG. 8. Attempted reconstruction of the square of the previous figure in the presence of a 2% noise level
searching for (a) 4 Fourier modes; (b) 6 modes; (c) 7 modes; (d) 9 modes; pseudo-data generated by a 16-electrode
system.

object was also specified at the beginning of the calculation. After 13 iterations the inverse
solution converged to the true image as shown in the last panel of Fig. 10.

In general, the number of objects present in the domain may be one of the unknowns of the
problem. As an example of such a situation we consider the following test conducted without
the deferred search strategy. The first panel of Fig. 11 shows the same square-shaped object
used before together with an initial guess constituted by two circles. We expected that if one
of the images converged to the true object, the other one would be forced to a small size to
minimize the error. The data were generated from the simulation of a 24-electrode system
with no noise contamination and 3 Fourier modes each were allowed in the reconstructed
objects. The final panel of Fig. 11 shows the result after 50 iterations, at which point the
results started fluctuating and the procedure was stopped. It is likely that this outcome was
due to a loss of accuracy of the boundary integral calculation caused by the intersection of
the boundaries. Nevertheless we show this result to demonstrate the tendency of the two
objects to coalesce in these conditions in an effort to reproduce the target.

The deferred search strategy suggests a simple way to prevent such coalescence of bound-
aries. Instead of forcing the reconstruction to converge quickly, which causes the algorithm
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FIG. 9. Attempted reconstruction of the square of the previous figures in the presence of a 1% noise level
(a)–(c), and a 2% noise level (d)–(f) with 12 electrodes (a), (d), 16 electrodes (b), (e), and 24 electrodes (c), (f ).
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FIG. 10. Snapshots of the convergence history of a two-object reconstruction with no noise contamination;
(a) initial guess; (b) first iteration; (c) second iteration; (d) converged results after 13 iterations. Pseudo-data
generated by an 8-electrode system.

to try and fit the two images into a single object, one may first look just for the number
of circles that minimizes the difference between true and inverted data.1 This forces the
inversion not to try to fit two deformed images onto a single object. After the number of
objects to be reconstructed is determined in this way, the inversion can proceeded normally.
A few snapshots of such a reconstruction sequence, based on a 12-electrode system, are
shown in Fig. 12. This approach can be extended to the case of several objects. One would
start with a certain number of circles as the initial guess. If this number is larger than that of
the objects, one would progressively eliminate any circle whose radius becomes too small.
If this does not happen, the initial number of circles should be increased until some are
eliminated thus ensuring that the correct number of objects has been identified. The starting
guess of the second phase of the solution would of course exploit the calculated informa-
tion on the centroid location and approximate radius of each object. This knowledge of the

1 Although one would expect the existence of such a minimum in many cases, it should be noted that no formal
proof is available.
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FIG. 11. Attempted reconstruction of the square of Fig. 7 searching for two objects; (a) initial guess; (b) first
iteration; (c) second iteration; (d) after 50 iterations. Pseudo-data generated by a 24-electrode system with no noise
contamination.

general location of the objects can be expected to help prevent the settling of the solution
into a local minimum.

5. CONCLUSIONS AND COMMENTS

This paper has introduced a new approach to image reconstruction by electrical impedance
tomography. By fitting the object by means of suitable “shapes”—as opposed to a discrete
number of points—one can increase the resolution of the object to be reconstructed without
a large increase in the number of parameters that need to be specified. As a consequence,
the number of unknowns can be kept relatively small, and sensitivity to the inherent ill-
posedness of the problem correspondingly reduced. The idea is to attempt the reconstruction
of an effectively “compressed” image, i.e., one that can be approximated well with a small
number of parameters. Alternatively, one may think of an object describable in terms of
several different representations each one characterized by a number—usually infinite—of
“degrees of freedom.” Clearly, it is advantageous to attempt the reconstruction of the object
in terms of the representation that, in a suitable sense, converges the fastest.
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FIG. 12. Attempted reconstruction of the square of the previous figure in terms of two circles; (a) initial
guess; (b) second iteration; (c) fourth iteration; (d) converged result after 9 iterations. Pseudo-data generated by a
12-electrode system with no noise contamination.

In this study we have represented the object by means of a truncated Fourier series
as it is well known that the Fourier coefficients of a smooth function converge faster than
algebraically. Clearly the essence of the idea introduced here can be implemented in a variety
of ways. The present study was only meant to introduce the concept and demonstrate its
performance in a number of examples. In conclusion, we indicate a number of points for
further research:

1. In order to start the search from an initial guess relatively close to the solution it
is useful to adopt the strategy of “deferred search”: a preliminary low-resolution search
in terms of circles or other simple shapes is conducted to estimate the number, position,
and general size of the objects. The final search can then be based on these preliminary
results with an increase in speed of convergence. This approach may be interpreted as a pre-
conditioning of the operator and alternative, more efficient strategies of this type may exist.

2. As expected, the inversion algorithm is sensitive to noise in the data. We have found
that images of reasonable quality could be produced even with noisy data by increasing the
number of measurements, i.e., of electrodes. Of course, this strategy has both practical and
intrinsic limits that it would be interesting to study.
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3. Another important point to be studied is the optimum resolution achievable for a
given number of data. As was shown in Fig. 9, the demand for an excessively high resolution
may result in a considerable degradation of the image.

4. The present shape decomposition approach may be extended to three-dimensions,
e.g., by using spherical harmonics. This appears to be another fruitful area for research.
Some preliminary, very encouraging results have been presented in Ref. [3].

5. One element of the forward problem not included in this study is the modeling
of the contact impedance between the conductive medium and the electrodes. In actual
experiments, perfect contact with the electrodes may not be an accurate assumption. How a
non-zero contact impedance would affect the present results is another point to be examined.

6. Shape decompositions in other than Fourier modes also need to be researched. This
flexibility may be of particular value when the general shape of the objects to be searched
is known. But one can also explore other orthogonal decompositions, such as Legendre
polynomials [20], etc. One of the limitations of expansions such as (4) is that they cannot
reproduce certain classes of nearly self-intersecting shapes. In this case, one may use more
than one Fourier decompositions for different parts of the boundary—and in this case give
up Eqs. (5)—or use, in place of the angleθ , a normalized arc length along the boundary.
This approach is not evidently restricted to Fourier decompositions, but can be used for any
(orthogonal or non-orthogonal) decomposition.

7. Finally—and most critically—it is necessary to test how the features of this method
that have been determined theoretically would stand the test of an actual experiment.
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